Search results for "premature termination codon"
showing 10 items of 12 documents
Pharmacophore-Based Design of New Chemical Scaffolds as Translational Readthrough-Inducing Drugs (TRIDs)
2020
[Image: see text] Translational readthrough-inducing drugs (TRIDs) rescue the functional full-length protein expression in genetic diseases, such as cystic fibrosis, caused by premature termination codons (PTCs). Small molecules have been developed as TRIDs to trick the ribosomal machinery during recognition of the PTC. Herein we report a computational study to identify new TRID scaffolds. A pharmacophore approach was carried out on compounds that showed readthrough activity. The pharmacophore model applied to screen different libraries containing more than 87000 compounds identified four hit-compounds presenting scaffolds with diversity from the oxadiazole lead. These compounds have been s…
Rescuing the CFTR protein function: Introducing 1,3,4-oxadiazoles as translational readthrough inducing drugs.
2018
Nonsense mutations in the CFTR gene prematurely terminate translation of the CFTR mRNA leading to the production of a truncated protein that lacks normal function causing a more severe form of the cystic fibrosis (CF) disease. About 10% of patients affected by CF show a nonsense mutation. A potential treatment of this alteration is to promote translational readthrough of premature termination codons (PTCs) by Translational Readthrough Inducing Drugs (TRIDs) such as PTC124. In this context we aimed to compare the activity of PTC124 with analogues differing in the heteroatoms position in the central heterocyclic core. By a validated protocol consisting of computational screening, synthesis an…
Targeting Nonsense: Optimization of 1,2,4-Oxadiazole TRIDs to Rescue CFTR Expression and Functionality in Cystic Fibrosis Cell Model Systems
2020
Cystic fibrosis (CF) patients develop a severe form of the disease when the cystic fibrosis transmembrane conductance regulator (CFTR) gene is affected by nonsense mutations. Nonsense mutations are responsible for the presence of a premature termination codon (PTC) in the mRNA, creating a lack of functional protein. In this context, translational readthrough-inducing drugs (TRIDs) represent a promising approach to correct the basic defect caused by PTCs. By using computational optimization and biological screening, we identified three new small molecules showing high readthrough activity. The activity of these compounds has been verified by evaluating CFTR expression and functionality after…
Strategies against nonsense: oxadiazoles as translational readthrough-inducing drugs (TRIDs)
2019
This review focuses on the use of oxadiazoles as translational readthrough-inducing drugs (TRIDs) to rescue the functional full-length protein expression in mendelian genetic diseases caused by nonsense mutations. These mutations in specific genes generate premature termination codons (PTCs) responsible for the translation of truncated proteins. After a brief introduction on nonsense mutations and their pathological effects, the features of various classes of TRIDs will be described discussing differences or similarities in their mechanisms of action. Strategies to correct the PTCs will be presented, particularly focusing on a new class of Ataluren-like oxadiazole derivatives in comparison …
Identification and validation of novel molecules obtained by integrated computational and experimental approaches for the read-through of PTCs in CF …
2015
Toward a Rationale for the PTC124 (Ataluren) Promoted Readthrough of Premature Stop Codons: A Computational Approach and GFP-Reporter Cell-Based Assay
2014
The presence in the mRNA of premature stop codons (PTCs) results in protein truncation responsible for several inherited (genetic) diseases. A well-known example of these diseases is cystic fibrosis (CF), where approximately 10% (worldwide) of patients have nonsense mutations in the CF transmembrane regulator (CFTR) gene. PTC124 (3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)-benzoic acid), also known as Ataluren, is a small molecule that has been suggested to allow PTC readthrough even though its target has yet to be identified. In the lack of a general consensus about its mechanism of action, we experimentally tested the ability of PTC124 to promote the readthrough of premature termination c…
Deciphering the Nonsense Readthrough Mechanism of Action of Ataluren: An in Silico Compared Study
2019
Ataluren was reported to suppress nonsense mutations by promoting the readthrough of premature stop codons, although its mechanism of action (MOA) is still debated. The likely interaction of Ataluren with CFTR-mRNA has been previously studied by molecular dynamics. In this work we extended the modeling of Ataluren's MOA by complementary computational approaches such as induced fit docking (IFD), quantum polarized ligand docking (QPLD), MM-GBSA free-energy calculations, and computational mutagenesis. In addition to CFTR-mRNA, this study considered other model targets implicated in the translation process, such as eukaryotic rRNA 18S, prokaryotic rRNA 16S, and eukaryotic Release Factor 1 (eRF…
Nonsense codons suppression. An acute toxicity study of three optimized TRIDs in murine model, safety and tolerability evaluation.
2022
Stop mutations cause 11% of the genetic diseases, due to the introduction of a premature termination codon (PTC) in the mRNA, followed by the production of a truncated protein. A promising therapeutic approach is the suppression therapy by Translational Readthrough Inducing Drugs (TRIDs), restoring the expression of the protein. Recently, three new TRIDs (NV848, NV914, NV930) have been proposed, and validated by several in vitro assays, for the rescue of the CFTR protein, involved in Cystic Fibrosis disease. In this work, an acute toxicological study for the three TRIDs was conducted in vivo on mice, according to the OECD No.420 guidelines. Animals were divided into groups and treated with …
IAP et Rho : enfin connectées
2014
231 m/s n° 3, vol. 30, mars 2014 DOI : 10.1051/medsci/20143003003 5. Apcher S, Millot G, Daskalogianni C, et al. Translation of pre-spliced RNAs in the nuclear compartment generates peptides for the MHC class I pathway. Proc Natl Acad Sci USA 2013 ; 110 : 17951-6. 6. de Turris V, Nicholson P, Orozco RZ, et al. Cotranscriptional effect of a premature termination codon revealed by live-cell imaging. RNA 2011 ; 17 : 2094-107. 7. Iborra FJ, Jackson DA, Cook PR. Coupled transcription and translation within nuclei of mammalian cells. Science 2001 ; 293 : 1139-42. 8. David A, Dolan BP, Hickman HD, et al. Nuclear translation visualized by ribosome-bound nascent chain puromycylation. J Cell Biol 201…
Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons
2020
Cystic fibrosis (CF) is caused by mutations in the gene encoding the transmembrane conductance regulator (CFTR) protein. Some CF patients are compound heterozygous or homozygous for nonsense mutations in the CFTR gene. This implies the presence in the transcript of premature termination codons (PTCs) responsible for a truncated CFTR protein and a more severe form of the disease. Aminoglycoside and PTC124 derivatives have been used for the read-through of PTCs to restore the full-length CFTR protein. However, in a precision medicine framework, the CRISPR/dCas13b-based molecular tool &ldquo